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Abstract: More than a dozen proteins are known to be ultrafast folders. In addition to being fast, their
kinetics is unusual. Like traditional rate processes, fast folding proteins have activation barriers at low
temperatures, but unlike traditional processes, they have negative activation energies at high temperatures.
We develop a model of ultrafast folders that joins a macroscopic mass-action model with a microscopic
energy landscape description; we call it the Thruway Search Model. We find good agreement with
experimental rates and equilibria on 13 ultrafast folders. The observed folding rates are found to be
proportional to the number of microscopic folding routes: fast-folding proteins have more parallel microscopic
routes on energy landscapes. At high temperatures, where traditional barriers are small, the remaining
bottleneck is a search through denatured conformations to find thruway routes to the native state. Negative
activation arises because increasing temperature expands the denatured ensemble, broadening the search,
slowing the folding to the native state. We find that the upper estimate of the free energy barriers are
positive but small, as little as 0.5 kT.

I. Introduction

Some proteins fold very rapidly. Calledultrafastfolders, more
than a dozen proteins known so far fold up on the microsecond
time scale.1-16 This time scale is interesting because it is
regarded as the speed limit of folding:17 it is the fastest speed
that a protein can fold when it has no thermal barriers. Ultrafast
folders can give insights into the intrinsic physical limitations
on folding speeds.

The thermal and kinetic properties of ultrafast folders are
interesting and puzzling. Most ultrafast folders show single-
exponential kinetics,1,5,7-11,13,16 but some fold with more
complex kinetics.3,4,18Equally puzzling, Arrhenius plots of their
folding rates vs temperature show normal positive activation
energy barriers at low temperatures, but they crossover to
becomenegatiVe actiVation enthalpiesat high temperatures.10

Non-Arrhenius kinetics (i.e., a nonlinear dependence of folding
rate on temperature) has also been observed for some two-state
proteins.19-28 This non-Arrhenius behavior has been explained
in different ways: (i) as a nonlinear temperature dependence
of the configurational diffusion constant (i.e., the front factor
in the rate equation) on rough energy landscapes,29 or (ii) as a
result of the temperature dependence of the hydrophobic
interaction, leading to a heat capacity of activation.30,31 An

† Present address: Physics Department and Center for Biological Physics,
Arizona State University, Tempe, AZ 85287.
(1) Qui, L.; Pabitt, S.; Roitberg, A.; Hagen, S.J. Am. Chem. Soc.2002, 124,

12952-12953.
(2) Wittung-Stafshede, P.; Lee, J. C.; Winkler, J. R.; Gray, H. B.Proc. Natl.

Acad. Sci. U.S.A.1999, 96, 6587-6590.
(3) Snow, C. D.; Nguyen, N.; Pande, V. S.; Gruebele, M.Nature2002, 420,

102-106.
(4) Kubelka, J.; Eaton, W. A.; Hofrichter, J.J. Mol. Biol. 2003, 329, 625-

630.
(5) Jager, M.; Nguyen, H.; Crane, J. C.; Kelly, J. W.; Gruebele, M.J. Mol.

Biol. 2001, 311, 373-393.
(6) Spector, S; Raleigh, D. P.J. Mol. Biol. 1999, 293, 763-768.
(7) Wang, T; Zhu, Y and Gai, F.J. Phys. Chem. B2004, 108, 3694-3697.
(8) Yang, W. Y.; Gruebele, M.Nature2003, 423, 193-197.
(9) Mayor, U.; Johnson, C. M.; Daggett, V.; Fersht, A. R.Proc. Natl. Acad.

Sci. U.S.A.2000, 97, 13518-13522.
(10) Zhu, Y.; Alonso, D. O. V.; Maki, K.; Huang, C. Y.; Lahr, S. J.; Daggett,

V.; Roder, H.; Degrado, W. F.; Gai, F.Proc. Natl. Acad. Sci. U.S.A.2003,
100, 15486-15491.

(11) Myers, J. K.; Oas, T. G.Nat. Struc. Biol.2001, 8, 552-558.
(12) Dimitriadis, G.; Drysdale, A.; Myers, J. K.; Arora, P; Radford, S. E.; Oas,

T. G.; Smith, D. A.Proc. Natl. Acad. Sci. U.S.A.2004, 101(11), 3809-
3814.

(13) Nguyen, H.; Jager, M.; Moretto, A.; Gruebele, M.; Kelly, J. W.Proc. Natl.
Acad. Sci. U.S.A.2003, 100(7), 3948-3953.

(14) Bunagan, M. R.; Yang, X.; Saven, J. G.; Gai, F.J. Phys. Chem. B2006,
110, 3759-3763

(15) Yang, W. Y.; Gruebele, M.Biochemistry2004, 43, 13018-13025
(16) Xu, Y.; Purkayastha, P.; Gai, F.J. Am. Chem. Soc.2006, 128, 15816-

15842.
(17) Kubelka, J.; Hofrichter, J.; Eaton, W. A.Curr. Opin. Struct. Biol.2004,

14(1), 76-88.

(18) Ma, H.; Gruebele, M.Proc. Natl. Acad. Sci. U.S.A.2005, 102, 2283-
2287.

(19) Scalley, M. L;Baker, D.Proc. Natl. Acad. Sci. U.S.A.1997, 95, 10636-
10640.

(20) Alexander, P.; Orban, J.; Bryan, P.Biochemistry1992, 31, 7243-7248.
(21) Tan, Y. J; Oliveberg, M.; Fersht, A. R.1996, 264, 377-389.
(22) Perl, D.; Jacob, M.; Bano, M.; Stupak. M.; Antalik, M.; Schmid, F. X.

Biophys. Chem.2002, 96, 173-190.
(23) Nico, A. J.; Van Nuland, J.; Meijbeg, W.; Warner, J.; Forge, V.; Scheek,

R. M.; Robillard, G. G.; Dobson, C. M.Biochemistry1998, 37, 622-637.
(24) Plaxco, K. W.; Guijarro, J. I.; Morton, C.; Pitkeathly, M.; Campbell, I. D.;

Dobson, C. M.Biochemistry1998, 37, 2529-2537.
(25) Main, E. R. G.; Fulton, K. F.; Jackson, S. E.J. Mol. Biol.1999, 291, 429-

444.
(26) Ibarra-Molero, B.; Makhatade, G. I.; Matthews, C. R.Biochemistry2001,

40, 719-731.
(27) Manyusa, S.; Whitford, D.Biochemistry1999, 38, 9533-9540.
(28) Kuhlman, B.; Luisi, D. L.; Evans, P. A.; Raleigh, D. P.J. Mol. Biol.1998,

284(5), 1661-1670.
(29) Bryngelson, J. D.; Onuchic, J. N.; Socci, N. F.; Wolynes, P. G.Proteins

1995, 21, 167-195.
(30) Chan, H. S; Dill, K. A.Protein 1998, 30, 2-33.
(31) Akmal, A.; Munoz, V.Protein 2004, 57(1), 142-52.

Published on Web 09/07/2007

11920 9 J. AM. CHEM. SOC. 2007 , 129, 11920-11927 10.1021/ja066785b CCC: $37.00 © 2007 American Chemical Society



interesting observation has been that non-Arrhenius behavior
becomes Arrhenius if folding rates are compared under isosta-
bilityconditions.19,32,33However,mostoftheultrafastfolders,5,6,8,10,13-15

unlike their fast-folding counterpart (with some exceptions),
show significant decreases in their folding rates upon increase
in temperature at high temperatures. It means that folding is
slowed down, not speeded up, by increasing the temperature.
We are interested in the microscopic principles underlying this
behavior. It is worth mentioning that the experimentally
observed folding rates cited throughout the manuscript are
usually extracted from the observed relaxation rates by using a
two-state model assumption.

The basis for non-Arrhenius behavior is related to the nature
of the landscape.34 It has been argued that under strong native
conditions, the barrier between the folded and unfolded states
disappears, and the folding time will be governed by the
diffusion rate along the reaction coordinate.29 Because the chain
diffusion is different at different stages of folding, the diffusion
coefficient would not be a constant, leading to multiple- or
stretched-exponential kinetics, regarded as a signature of
downhill folding.5,8,35 However, barrierless folding does not
necessarily imply non-exponential kinetics.36-40 Downhill fold-
ing has been studied using simple protein models.8,38,39,41There
have also been efforts8,41 to study relaxation kinetics on 1D
energy landscapes based on similar models proposed by
Bryngelson et al.29 using Langevin dynamics simulations.

The model of Munoz and co-workers describes downhill
folding as a one-state process at all temperatures. According to
that model, the minimum shifts continuously from native to
unfolded as the native bias is reduced.38,42,43In connection to
the study of downhill folding, BBL (the peripheral subunit
binding domain from oxoglutarate dehydrogenase) and its three
bacterial homologs constitute an interesting system to explore
the folding landscape.42-52

Here, we develop a model for analyzing experimental
temperature-dependent folding kinetics in a way that can give
insights into the microscopic energy landscapes that underly
them.

II. Model

On the one hand, we wanted a mass-action-like model that
could be used to fit experimental folding and unfolding rate

data vs temperature. On the other hand, we also wanted a model
that could give insights about features of energy landscapes,
such as the numbers of microscopic routes. So, we describe
here a hybrid, which we call theThruway Search Model.

We regard the native stateN as a single microstate (Figure
1). We divide the denatured macrostate,D, which is a broad
ensemble of microstates, into two subsets: (1) MacrostateD0

(Figure 1) is the set of all the denatured microstates that have
direct access toN. There aremb of these conformations, which
we call thruway states.53 There aren micro-routes connecting
D0 directly toN; we call thesethruway routes. We do not know
n in advance; it is one of the model parameters that we use to
fit experimental data.

MacrostateDm is the subset of denatured states that aredead-
endsor kinetic traps; there arema such dead-end conformations.
To reach the native state, any conformation beginning inDm

must first pass through aD0 state. We call thesetrap routes.
In classical terminology, the stateDm would be called an off-
pathway kinetic intermediate.

For the process of trapping, in going from any one of theD0

microstates to any of theDm microstates, the rate coefficient is
k2. All such micro-routes are assumed identical; we could
consider distributions in barrier heights, but it would just lead
to unwarranted complexity here. For the reverse process, the
rate coefficient isk′2. For the process of folding, in going from
any of theD0 microstates toN along any of the thruway routes,
the rate coefficient isk1; the reverse rate coefficient isk′1. q is
the number of routes from oneD0 conformation toN.

Shown schematically in Figure 1, the master equation for this
model is

The total number of routesn will equal the number of routesq,
from each thruway state, multiplied by the number of total
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Figure 1. Thruway Search Model, microscopic funnel energy landscape.
Denatured conformations are either thruway states (D0 with mb conforma-
tions), having direct access to the native stateN, or dead-end states (Dm

with ma conformations), which must search to find thruway routes.

dDm

dt
) -mbk′2Dm + mbk2D0 (1)

dD0

dt
) -mak2D0 + mak′2Dm - qk1D0 (2)

dN
dt

) qk1D0 - qk′1N (3)
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thruway states,mb, n ) qmb (see details in Supporting
Information, appendix B). Do, Dm and N in the above equation
denote the concentration of macrostatesDo, Dm and N
respectively. A similar set of rate equations has been proposed
before,54 except without the thermal aspects described below.
Along each type of route, we assume an Arrhenius barrier,

wherekT is Boltzmann’s constant multiplied by the absolute
temperature andk0 defines an intrinsic time scale, dependent
on the chain length,L. The energy barrier along the native
folding routes fromD0 to N is εDN and the unfolding barrier is
εND. We assume that the barrier along the trap routes (fromD0

to Dm or vice versa) is identical in each direction, because this
describes a transition from one denatured state to another.

A key aspect here is that the Thruway Search Model treats
the expansion of the denatured state with temperature, which
leads to increased searching at higher temperatures. We use the
Flory-Huggins theory55,56 to approximate these effects. In our
model, the number of denatured conformations,m(L, T), depends
on temperature,T, and on the chain length,L, as described in
the appendix A of the Supporting Information.

We want to compute the macroscopically observable folding
rate, kf, from this microscopic model. So, we calculate the
folding time distribution, applying an absorbing boundary
condition to the stateN. The folding rate is the inverse of the
average folding time obtained from this distribution. We initiate
folding from the fully populated stateD0. (We have also
initiated folding from states that are mixtures ofD0 andDm,
but the results are essentially the same, and the present approach
keeps the math simpler.) It is shown in the appendix B of the
Supporting Information that the folding rate from this model is

and the unfolding rateku is

The unfolding rate is obtained by usingk′1, which is the rate
coefficient to go from native toD0 state.

We can also define an overall relaxation ratekr in the two
state picture that can be written as a sum ofkf andku defined
above. In a typical experiment, it is the overall relaxation rate
that is measured directly rather than the folding and unfolding
rates separately.

Here’s how we apply the model. We first compute the
intrinsic rate,k0, using the relationship of Eaton et al.,4 k0 )
100/L µ s-1. Our aim is to fit experimental data for the folding
and unfolding rates of a given protein as a function of
temperature. To do that, we use the four model parameters: the

(54) Ellison, P. A.; Cavagnero, S.Protein Sci.2006, 15(3), 564-582.
(55) Dill, K.; Bromberg, S.Molecular driVing forces: statistical thermodynamics

in chemistry and biology; Garland Science: New York, 2003.
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5449.

Figure 2. Model fits to overall relaxation, folding, and unfolding rate data for different proteins. Overall relaxation or the observed relaxation is in blue,
folding rates are in red, and unfolding rates are in black. Solid lines are theoretical fits from the model.

kf )
nk0

m(L, T)
e(-εDN/kT) (8)

ku ) nk0e
(-εND/kT) (9)

kr ) kf + ku (10)

k1 ) k0 exp(-εDN/kT) (4)

k′1 ) k0 exp(-εND/kT) (5)

k2 ) k0 exp(-ε/kT) (6)

k′2 ) k0 exp(-ε/kT) (7)
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number of routesn; the dimensionless chain monomer interac-
tion energy e related to Flory interaction paramterø (see
appendix A in the Supporting Information); and the barrier
energies for foldingεDN and unfoldingεND. We note that using
a more traditional strategy, based on an Eyring model,57 would
require instead a total of 6 parameters, and would give less
information about the shape of the energy landscape. Moreover,
an Eyring model would predict (incorrectly) that the folding
rate goes to zero at infinite temperature,58 in strong disagreement
with the data.

Described below, the model predicts that the rates of folding
and unfolding are proportional ton, the number of microscopic
pathways. In addition, the model shows that the folding rate is
reduced in proportion to the size of the denatured state space,
which grows with temperature.

III. Results: Fast-Folding Proteins Have More
Micro-Routes than Slower Proteins

For the 13 proteins for which data is currently available, this
model captures well the temperature dependences of the folding
and unfolding rates (Figure 2). We have also fitted the overall
relaxation rates (kr); these are the quantities that are observed
directly in experiments. Our model accounts for the crossover
from Arrhenius-like positive activation behavior at low tem-
peratures to anti-Arrhenius negative activation behavior at high
temperatures, as follows. At low temperatures, folding is rate-
limited by traditional barrier-crossing events along thruway
routes to the native state. This is the positive activation region.
In contrast, at high temperatures, increasing the temperature
expands the denatured chain, leading to a larger search space
(m(L, T) increases), which slows the search the chain must make
through its dead-ends to find thruways to the native state (see
eq 8).

Table 1 gives the fit parameters for each of 13 ultrafast
folders, and for 2 slower-folding proteins, L9, and apo-
cytchrome. (We have excluded the peripheral subunit protein
because of the significant scatter in the experimental kinetic
data (see Figure 2).) What can we learn from the values of the

fit parameters? First, Figure 3 shows that the number of routes,
n, found in the model correlates with a structural property of
the native state, the relative contact order (RCO). That is, the
fastest-folding proteins (mainly helical) have the largest mul-
tiplicity of folding routes;R-â andâ proteins have fewer folding
routes. There are more folding routes for helical proteins because
there are more places in the sequence where a helix can nucleate
its folding. In â structures, nucleation is dominated by starting
at a single site, namely the turn.

Second, Figure 4 shows that the best-fit value of the
interaction parametere increases with the chain length. Larger
values ofe correspond to a greater driving force to fold. The
correlation in the figure indicates a greater folding cooperativity
of larger proteins.

The model predicts that larger proteins have more compact
denatured states, hence smaller values ofm, hence their rate-
limiting step is not conformational searching. Hence these slower
larger proteins all have barrier-limited kinetics, that is, positive-
activation Arrhenius kinetics, for all temperatures, consistent
with experiments.

An interesting experimental system is the set of different
mutants of λ-reprecessor fragmentλ6-85.15 It is interesting

(57) Glasstone, S; Laidler, K. J.; Eyring, H.Theory of Rate Processes; McGraw-
Hill: New York, 1940.

(58) Ibarra-Molero, B.; Makhatadze, G. I.; Matthews, C. R.Biochemistry2001,
40, 719-731.

Table 1. Extracted Values of the Parameters from the Fit

protein name εDN(kT) εND(kT)
e

(kcal/mol) log(n) L

Trpcage(engineered)14 7.0 20.0 .61 6.9 20
Trpcage(WT)1 22.1 31.4 0.74 11.8 20
WW domain FBP2813 11.7 32.9 0.51 10.7 28
WW domain pin(WT)5 10.8 42.8 0.42 13.93 34
Villin headpiece
subdomain4

24.0 47.6 0.62 16.94 35

Peripheral subunit6 25.9 53.1 0.58 18.76 41
Albumin binding
domain7

28.2 62.2 0.7 20.87 47

L928 29.5 45.9 1.3 13.35 56
Protein A12 29.3 52.3 1.1 17.76 58
Engrailed Homeo
domain9

27.5 49.2 0.97 17.78 61

R3D10 26.1 48.0 1.2 16.96 73
Apocytochrome b527 42.5 50.8 2.1 16.3 104
λQ33Y15 23.6 65.2 0.8 22.6 80
λsA49G15 33.2 56.9 1.06 20.7 80
λD14A15 44.0 61.0 1.48 21.3 80

Figure 3. Number of micro-routesn vs a topological property of the native
structure, the RCO, for each protein. The number of pathways correlates
with the relative contact order. Fast-folders, which are typically helical
proteins, have more micro-routes to native than slower folders. The
correlation coefficientR is 0.81

Figure 4. Flory interaction parameter (in kcal/mol) that best fits the rate
data for each protein correlates with the chain length. Correlation coefficient
is 0.91
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because these otherwise identical proteins have different folding
rates with different temperature dependences. We have fitted
our model to the data on three mutants, Q33Y, A49G, and D14A
(see Figure 5). In our model, Q33Y has the largest number of
folding pathways and A49G has the smallest number (see Table
1), consistent with their corresponding folding speeds: Q33Y
is fastest and A49G is slowest. The large value ofe for D14A
implies a compact denatured state, so the conformational search

is not limiting, and thus Arrhenius behavior is predicted at all
temperatures. At the other extreme, Q33Y has the smallest value
of e, meaning that the largest conformational search through
the most expanded denatured state, which implies that rate limit
is the diffusive search, hence non-Arrhenius kinetics.

Any model that captures the folding kinetics vs temperature
should also capture the folding equilibrium vs temperature.
Figure 6 confirms this for the 11 proteins for which equilibrium

Figure 5. Model fits to folding and unfolding rate (in the units ofµ s-1) data for different mutants of lambda repressor protein.15 (b) Folding rates; (9)
unfolding rates. Solid lines are theoretical fits to the folding rates and broken lines are the same for the unfolding rates predicted from the model. We follow
the same color scheme used in the original paper.15

Figure 6. Model fits to temperature dependence of free energy of folding (∆GDN(T)) for 11 proteins. (b) Experimental data; solid lines indicate the theoretical
fits from the model.

A R T I C L E S Ghosh et al.
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folding free energies are available. As an aside, for fitting
equilibrium stabilities, an even simpler model is to use the
difference in barrier heights∆ε ) εND - εDN andeas two fitting
parameters, in contrast to the more usual practice of fitting the
folding free energy with three parameters:∆Cp, ∆S(Tm), and
Tm, for example. The details are given in appendix D in the
Supporting Information. The parameters obtained using this
simpler 2-parameter model are consistent with the parameters
from our kinetic model above.

IV. Are There Energy Barriers to Ultrafast Folding?

Ultrafast folding has been called downhill or barrierless5,8,17

because of the observation that the kinetics is sometimes non-
exponential. However, in other cases, single-exponential kinetics
is observed, for example in the engineeredλ6-85 protein,
monitored using IR or fluorescence probes under strong native
conditions.18 Munoz and co-workers concluded that BBL is a
downhill folder based on studies of melting temperatures, large
changes in heat capacity, and continuous transitions observed
by NMR during thermal unfolding.42-46 However, studies by
Ferguson et al.49 on three bacterial homologues of that protein
show single-exponential kinetics and a cooperative unfolding
denaturation.

Here, we propose an independent way to test our model. The
Thruway Search model predicts dynamics that is single-
exponential at high and low temperatures, and with a possibility
of a more complex kinetics in between, depending on the
protein. Our model predicts a folding time distribution (Equation
B6, Appendix B in the Supporting Information). In principle,
this distribution could be observed in single-molecule folding
experiments,59,60 when such experiments become available. In
particular, we can calculate the variance of folding times from
the second moment (〈τ2〉). We divide the variance by 2× the
square of the first moment (2〈τ〉2), a property introduced and
calledR2 by Onuchic et al.61 (see details in the Appendix C in

the Supporting Information). As derived in equation C6 (ap-
pendix C in the Supporting Information) we find

This quantityR2 is a useful measure of the non-exponentiality
of the rate distribution. If a protein folds with ideal two-state
single-exponential kinetics, thenR2 ) 1. Our model predicts a
single exponential (R2 f 1) at low temperatures, because the
trap barriers are much smaller than the folding barriers at those
temperatures (k1/k2 f 0 in eq 11). Our model also predicts a
single-exponential at high temperatures becauseR2 f 1 asm
increases (ma/m2 f 0 in eq 11). For midrange temperatures,
however, for some values of parameters, it is possible forR2 to
be significantly greater than unity, meaning a large variance in
rates, and thus non-exponential behavior. Thus, our model allows
the possibility of both single and non-exponential behavior over
the midrange of temperatures for different proteins. This may
account for apparent contradictions in some experimental data.
Using predicted quantities such as these, single-molecule
experiments could provide useful tests.

In our model, each micro-route has an energy barrier. What
is most relevant for comparing to experiments, however, is the
height of the macroscopicfree energybarrier. We explicitly
assume the Arrhenius law (eq 12) since this is the standard way
that macroscopic barriers are traditionally defined. The folding
ratekf is expressed in terms of the folding free energy barrier,
∆Gq as

where we have explicitly indicated the dependence on temper-
ature. Comparing this with eq 8 gives

(59) Rhoades, E.; Gussakovsky, E.; Haran, G.Proc. Natl. Acad. Sci. U.S.A.
2003, 100(6), 3197-3202.

(60) Rhoades, E.; Cohen, M.; Schuler, B.; Haran. G.J. Am. Chem. Soc.2004,
126, 14686-14687.

(61) Leite, V. B. P.; Onuchic, J. N.; Stell, G.; Wang, J.Biophys. J.2004, 87(6),
3633-3641.

Figure 7. Free energy barrier heights (∆Gq(T)) for different proteins at different temperatures (from eq 13). The two slower folding proteins, Apocytochrome
and L9, are shown in blue.

R2 - 1 )
qk1ma

k2m
2

(11)

kf(T) ) k0 exp(-∆Gq(T)/kT) (12)

∆Gq(T) ) εDN - kT ln( n
m(L, T)) (13)
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where we use the values ofn and εDN that are obtained from
the curve-fits of experimental data and wherem(L, T) is obtained
from equation A6 (see Supporting Information) based on the
value ofe also obtained from the fit.

Our model indicates that for the ultrafast folders studied here,
the free energy barriers can be very small (ranging from 0.5 kT
for albumin binding domain, the fastest folder with the smallest
barrier, to 10 kT for apocytochrome, a slow folder), but none
of the barriers is truly zero (see Figure 7). These proteins all
have positive free energy barriers at all temperatures (see Figure
7). The barriers themselves are temperature dependent. Munoz
et al. have recently developed an NMR technique that can
observe barriers as small as 3 kT;46 this may prove quite useful
for proteins of the type we have studied here. We note the caveat
that our estimates of these barrier heights are based assuming
the intrinsic rate,k0 ) 100/L µ s-1.4 This value ofk0 is an upper
limit, meaning that our model could over-estimate the barrier
heights.

Figure 8 is a summary of the model predictions, at two
different temperatures. First, it shows a cartoon energy land-
scape, illustrating the different sizes of the search space at the
two different temperatures. This indicates the role of the chain
entropy in the folding kinetics. Second, the figure also shows

reaction coordinate diagrams, but with the enthalpy and the free
energy shown separately here. Comparing these diagrams shows
that enthalpy barriers can be substantial even when the free
energy barriers are quite small. In addition, it shows that at high
temperaturessabove the denaturation transitionsthe enthalpy
stabilizes folding, whereas the chain entropy destabilizes it.

Overall, at low temperatures, folding is dominated by
traditional energy barriers along the thruway routes to the native
state. At high temperatures, where those barriers are readily
overcome, the rate-limit becomes the search of the chain through
its trap states to find direct thruway routes to the native state.
As the temperature increases, for ultrafast folders, the number
of dead-ends increase (shown in Figure by increased size of
theDm basin), accounting for the negative activation behavior
at high temperatures.

V. Conclusions

We have developed a model of protein folding kinetics that
combines the microscopic energy landscape funnel perspective
with a macroscopic master-equation. Our goal was a model that
could fit experimental data and where the parameters have some
meaning in terms of the shape of the energy landscape of the
microstates. We apply the model mainly to ultrafast folders,

Figure 8. Interpreting the model, in two ways: with energy landscapes and reaction coordinate diagrams, at two different temperatures, 357 and 318.4 K.
At low temperature, folding is rate-limited by energy barriers on the thruway micro-routes fromD0 to N. At high temperatures, those energy barriers are
readily overcome, and the rate-limit then becomes the speed the chain can search through its denatured trap states to find a thruway route to native. Atthe
low temperature, the folding free energy is∆GDN ) GN - GD ) -2.62 kcal/mol, enthalpic change∆HDN ) -31.3 (kcal/mol) and the change in entropy
∆SDN ) -44.25 (in the Boltzmann unit,kB). At the same temperature, we also calculate the barrier height,∆Gq ) 0.87 (kcal/mol) whereas the enthalpic
contribution to the barrier is∆Hq ) 4.3 (kcal/mol) and the entropic contribution is∆Sq ) 5.3 (kB). Similarly, we calculate all the stability values and barrier
heights at the highest temperature, 357 K. We report∆GDN(357) ) 1.1 (kcal/mol),∆HDN(357) ) -35.4 (kcal/mol),∆SDN(357) ) -50.30 (kB), ∆Gq(357)
) 1.52 (kcal/mol),∆Sq(357)) 11.5 (kB), and∆Hq(357)) 9.9 (kcal/mol). These numbers have been calculated from our model by fitting the data forR3D.
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where extensive thermal data is available. Unlike Eyring-based
models, which would require six parameters and give no
information about the energy landscape, the present model
requires only four parameters to fit each protein and gives
information about the shapes of the energy landscape. The model
indicates that the fastest folders are proteins having a high
multiplicity of parallel microscopic folding routes, and that the
barriers for the fastest folders at high temperatures are due to
the speed that the chain searches its conformations to find routes
to the native state. It follows that these proteins have activation
barriers at low temperatures and negative activation at high
temperatures. The model also predicts folding time distributions;

these could give a definitive test of the model when single-
molecule folding experiments become available.
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